Antenna Classification Using Gaussian Mixture Models (GMM) and Machine Learning
نویسندگان
چکیده
منابع مشابه
Offline Signature Verification System with Gaussian Mixture Models (GMM)
Gaussian Mixture Models (GMMs) has been proposed for off-line signature verification. The individual Gaussian components are shown to represent some global features such as skewness, kurtosis, etc. that characterize various aspects of a signature, and are effective for modeling its specificity. The learning phase involves the use of Gaussian Mixture Model (GMM) technique to build a reference mo...
متن کاملUnsupervised Classification with Non-Gaussian Mixture Models Using ICA
We present an unsupervised classification algorithm based on an ICA mixture model. The ICA mixture model assumes that the observed data can be categorized into several mutually exclusive data classes in which the components in each class are generated by a linear mixture of independent sources. The algorithm finds the independent sources, the mixing matrix for each class and also computes the c...
متن کاملSubspace Gaussian mixture models for dialogues classification
The main objective of this paper is to identify themes from dialogues of telephone conversations in a real-life customer care service. In order to capture significant semantic content in spite of high expression variability, features are extracted in a large number of hidden spaces constructed with a Latent Dirichlet Allocation (LDA) approach. Multiple views of a spoke document can then be repr...
متن کاملDust source mapping using satellite imagery and machine learning models
Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...
متن کاملSpeech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Open Journal of Antennas and Propagation
سال: 2020
ISSN: 2637-6431
DOI: 10.1109/ojap.2020.3008130